谷氨酸脱氢酶(GLDH)测定试剂盒(α-酮戊二酸底物法)说明书

【产品名称】

产品货号	产品名称	包装规格	测定方法
AMHG3-M48	谷氨酸脱氢酶(GLDH)	48T	微量法
AMHG3-M96	活性检测试剂盒	96T	微量法

【预期用途】

用于体外定量测定人血清中谷氨酸脱氢酶的活性。

谷氨酸脱氢酶是一种主要存在于细胞线粒体基质中的酶, 其中以 肝脏含量最高, 其次为肾脏、胰腺、脑、小肠粘膜及心脏等器官。 GLDH 作为肝脏线粒体酶,是实质肝脏细胞坏死的指标,结合氨 转移酶,可以判断肝脏实质性损害的轻重程度。在诸多肝脏疾病 中均可能出现升高, 尤其是肝脏细胞明显损害时, 如酒精性肝损 害、急慢性肝炎、肝硬化、阻塞性黄胆等。

【检验原理】

GLDH

α-酮戊二酸+ NADH+ NH4+ → 谷氨酸+ NAD++ H2O 在340nm测定NADH的变化,吸光度下降的速率与样品中GLDH 活性成正比。

【主要组成成分】

试剂盒组成	主要组分
	三乙醇胺缓冲液
 试剂 1	醋酸铵
ן ניזק) זו 	乙二胺四乙酸
	α-酮戊二酸
	三乙醇胺缓冲液
试剂 2	二磷酸腺苷
	还原性辅酶I

【样本要求】

1、组织:按照组织质量(g):提取液体积(mL)为 1:5~10 的比例 (建议称取 0.1 g 组织,加入 1 mL 提取液)进行冰浴匀浆。 5000 rpm, 4℃离心 10 min, 取上清置冰上待测。

2、血清(浆)等液体:直接测定。

【检验方法】

1.试剂配制:双试剂反应:试剂1和试剂2开瓶即用。

2.试验条件: (可根据不同检测仪器索取不同的上机参数)

主波长	340nm	样品	16μL
			•

副波长	405nm	试剂 1	150μL
反应温度	37°C	试剂 2	50μL
比色杯光径	1cm	反应类型	速率法
校准方法	两 点 校 准	反应方向	向下

3.操作步骤:

加入物	空白管	测定管		
试剂 1	150μL	150μL		
蒸馏水	16μL	-		
标本	-	16μL		
混匀, 37℃孵育 3~5min				
试剂 2	50μL	50μL		
混匀, 37℃恒温 100s,再读取之后 200s 内吸光度变化率				

【谷氨酸脱氢酶(GLDH)活性计算】

1、按样本蛋白浓度计算

单位定义: 每毫克组织蛋白每分钟催化 1 微摩尔(μmol)NADH 氧化为 NAD+所需的酶量。

GLDH(U/mg prot)= $[\Delta A \times V_{\text{KM}} \div (\epsilon \times d) \times 10^9] \div (V_{\text{K}} \times Cpr) \div T$

2、按样本质量计算

单位定义: 每克组织每分钟催化 1 微摩尔 (μmol) NADH 氧化为 NAD+所需的酶量。

GLDH(U/g 质量)=[$\triangle A$ W $_{\text{反总}}$ ÷($\epsilon \times d$)×109]÷($V_{\#}$ ÷ $V_{\#\&}$ ×W)÷T

3、血清(浆)等液体计算

单位定义: 每毫升液体每分钟催化 1 微摩尔 (μmol) NADH 氧化 为 NAD+所需的酶量。

 V_{Ed} : 反应体系总体积, 216×10⁻³ L; ϵ : NADH 的摩尔吸光系数 (6.22×1036.22×10³) L/mol/cm; d: 比色皿光径, 1cm; V #: 加 入样本体积, 0.016mL; V ##: 加入提取液体积, 1mL; T: 反应 时间, 3min; 109: 单位换算系数, 1mol=109nmol; W: 样本质 量, g;